Note on Graph and Network

Zepeng CHEN

The HK PolyU

Date: January 11, 2023

1 Notation of Graph

Definition 1.1 (Graph (Network))

A network (graph) (N, A, G) consists of

- 1. $N = \{1, ..., n\}$: the node set (n nodes);
- 2. A: the arcs set (m arcs);
- 3. G: $n \times n$ adjacency matrix, where $g_{ij} = 1$ if i and j are connected, and $g_{ij} = 0$ otherwise.

Note on Network Flow In network flow problem, the 1st node we call it source node, and the last node we call it sink node.

Note on Social Network Analysis In SNA, we assume that there is no self-loops, i.e., $g_{ii} = 0$. For example,

- *1. Empty network:* $g_{ij} = 0$ for all $i \neq j$;
- 2. Complete network: $g_{ij} = 1$ for all $i \neq j$;
- 3. Directed network: there exists g_{ij} s.t. $g_{ij} \neq g_{ji}$;
- 4. Weighted network: there exists g_{ij} s.t. $0 < g_{ij} < 1$.

Definition 1.2 (Subgraph)

Suppose $S \subseteq N$ is the subset of nodes set, then a subgraph based on S is defined as

 $G|_{S} = \{ij \mid g_{ij} = 1 \text{ and } i, j \in S\}.$

Definition 1.3 (Degree)

Degree(i) is the total number of arc that are incident to node i.

indegree(i) + outdegree(i) = degree(i)

Note on Network flow We can always find a node with indegree=0 (source node) and a node with outdegree=0 (sink node).

Lemma 1.1

The sum of degrees is equal to twice the number of arcs, i.e. $\sum_{i \in N} d_i(G) = 2m$.

Definition 1.4 (Walk)

A walk in G is a G' consisting of nodes and arcs $i_1 - a_1 - i_2 - \dots - i_{r-1} - a_{r-1} - i_r$ satisfying that $a_k = (i_k, i_{k+1}) \in A$ or $a_k = (i_{k+1}, i_k) \in A$.

Definition 1.5 (Path)

A path is a walk without repetition of nodes. A walk is more free and a path can not go back to points visited before.

Definition 1.6 (Loop)

A loop is an arc whose tail node is the same as its head node.

Definition 1.7 (Cycle)

A cycle is a path $i_1 - i_2 - \dots - i_{r-1} - i_r$ together with arc (i_r, i_1) or (i_1, i_r) .

Proposition 1.1 (Degree and cycle (Kanti, 2018))

A graph with all degrees greater than 2 contains a cycle.

Definition 1.8 (Geodesic)

A geodesic between i and j is a shortest path between i and j.

Definition 1.9 (Component)

A component of (N, G) is its maximal connected subnetwork: (N', G') s.t.

- *1.* subnetwork: $\emptyset \neq N' \subseteq N$ and $G' \subseteq G$;
- 2. connectness: (N', G') is connected;
- *3. maximal: if* $i \in N'$ *and* $ij \in G$ *, then* $j \in N'$ *and* $ij \in G'$ *.*

Note on The set of components of a network (N, g) given N is denoted C(g), and the component containing a specific node *i* is denoted $C_i(g)$. Let $\Pi(N, g)$ denote the partition of N induced by the network (N, g). For example, p48. In other words, a network is connected iff it consists of a single component, i.e., $\Pi(N, g) = \{N\}$.

Definition 1.10 (Bridge)

A link ij is a bridge in the network g if g - ij has more components than g.

Definition 1.11 (Acyclic graph)

A graph is acyclic if it contains no directed cycle.

Definition 1.12 (Connectivity and Strong Connectivity)

A network is connected if every two nodes are connected by some path in the network. A connected graph is strongly connected if it contains at least one directed path from one node to every other node.

Definition 1.13 (Cut, s-t Cut)

A cut is a partition of the nodes in N into two parts: S and $\overline{S} = N - S$.

2 Special Network

Definition 2.1 (Tree Network)

A tree is a connected graph that contains no cycles.

Lemma 2.1

- A tree on n nodes contains n 1 arcs.
- A tree has at least two leaf nodes (degree=1).
- Every two nodes in a tree are connected by a unique path.

Definition 2.2 (Forest)

A forest is a network such that each component is a tree. Thus any network that has no cycles is a forest.

Definition 2.3 (Cayley Tree)

Each node besides leaves has degree d.

Definition 2.4 (Rooted tree)

A rooted tree is a tree with a specifically designated node, called its root. Arcs in a rooted tree define predecessor-successor relationships.

Definition 2.5 (Direct-out tree)

A direct-out tree is a tree rooted in s, where the unique path in the tree from node s to every other node is a directed path.

Figure 1: Instances of directed out-tree and directed in-tree.

Definition 2.6 (Spanning tree)

A tree T is a spanning tree of G if T is a spanning subgraph of G.

Theorem 2.1

Let $G = (N, \epsilon)$ be a connected undirected graph and let ϵ_0 be some subset of the set ϵ of arcs. Suppose that the arcs in ϵ_0 do not form any cycles. Then, the set ϵ_0 can be augmented to a set $\epsilon_1 \supset \epsilon_0$ so that (N, ϵ_1) is a spanning tree.^a

^aBertsimas (1997). Introduction to linear optimization

Definition 2.7 (Fundamental cycle)

Addition of any non-tree arc to the spanning tree T creates exactly one cycle–fundamental cycle. Since a graph has m - n + 1 non-tree arcs, it has m - n + 1 fundamental cycles.

Definition 2.8 (Star Network)

(N,G) is a star network if it is a tree that has a "center" node *i* such that every link in the network involves node *i*.

Note on *Star network is a special case of tree.*

Definition 2.9 (Complete Network)

The complete network is a graph where all possible links are present, i.e. $g_{ij} = 1$ for all $i \neq j$.

Definition 2.10 (Neighborhood (friends))

- 1. The neighborhood (friends) of node *i* is the set of nodes that *i* is linked: $N_i(G) = \{j : g_{ij} = 1\}$;
- 2. All the nodes that can be reached from *i* by paths of length no more than *k* is the *k*-neighborhood of *i*, *i.e.*

$$N_i^k(g) = N_i(g) \cup \left(\bigcup_{j \in N_i(g)} N_j^{k-1}(g)\right)$$

3. Given a set of nodes S, the neighborhood of S is the union of the neighborhoods of its members, i.e.

$$N_S(g) = \bigcup_{i \in S} N_i(g) = \{j : \exists i \in S, g_{ij} = 1\}.$$

Definition 2.11 (Circle Network)

(N,G) is a circle network if it has a "single" cycle and each node in the network has exactly two neighbors.

3 Statistics of Network

Definition 3.1 (Degree distribution)

The degree distribution of a network is a description of the relative frequencies of nodes that have different degrees.

Definition 3.2 (Distance, diameter, Average path length)

- 1. The distance between two nodes is the length of the shortest path or geodesic between them.
- 2. The diameter of a network is the largest distance between any two nodes in the network.
- 3. Average path length is the average taken over geodesics.

Definition 3.3 (Cliquishness)

 $S \subseteq N$ is clique if

- *1.* $G|_S$ is a complete network;
- 2. for any $i \in N \setminus S$, $G|_{S \cup \{i\}}$ is not complete.

Note on A clique is a maximal completely connected subnetwork.

Definition 3.4 (Clustering measure)

If i is a friend of j and k, CL measures how likely is it on average j and k are friend: $CL(G) = \frac{\sum_{i} \# \{jk \in G \mid j \neq k, j, k \in N_{i}(G)\}}{\sum_{i} \# \{jk \mid j \neq k, j, k \in N_{i}(G)\}}$

Note on The most common way to measure some aspect of cliqueshness.

Definition 3.5 (Degree centrality)

Degree centrality of *i* is $\frac{1}{n-1} \sum_{j \in N} g_{ij}$.

Note on *Clustering measure is in macro level, and degree centrality is in micro level. It tells us how well a node is connected, in terms of direct connections.*

Definition 3.6 (Decay centrality)

Decay centrality of *i* is $\sum_{j \neq i} \delta^{l(i,j)}$, where $\delta \in (0,1)$ is the decay parameter, and l(i,j) is the number of links in the shortest path between *i* and *j*.

Definition 3.7 (Betweenness centrality)

Betweenness centrality of *i* is $\sum_{k \neq j: i \notin \{k,j\}} \frac{P_i(kj)/P(kj)}{(n-1)(n-2)/2}$, where $p_i(kj)$ is the number of geodesics between *k* and *j* that involves *i*, and P(kj) is the number of geodesics between *k* and *j*.

4 Network Representation

Definition 4.1 (Node-Arc incidence matrix)

- Arc (i, j) has +1 in row i and -1 in row j.
- Storage efficiency $\frac{2m}{nm}$ and becomes inefficient when n is large.
- Sum of all rows is zero, it means these rows are not independent.

Let us now focus on the ith row of A (node-arc incidence matrix), denoted by a'_i . Thus

$$\mathbf{a}'_i \mathbf{f} = \sum_{j \in O(i)} f_{ij} - \sum_{j \in I(i)} f_{ji} = b_i \quad \text{or} \quad Af = b$$

Definition 4.2 (Node-Node adjacency matrix)

Proposition 4.1 (Power of Adjacency matrix)

Let A denotes the node-node adjacency matrix of a network G. Then the ijth entry of the matrix A^k , k = 1, ..., n is the number of walks of length k from node i to node j.^a

^{*a*}Finding path-lengths by the power of Adjacency matrix of an undirected graph

Proof By induction,

х

Proposition 4.2 (Adjacency matrix and strongly connected¹)

Let A denotes the node-node adjacency matrix of a network G. Then G is strongly connected iff the matrix $A + A^2 + ... + A^n$ has no zero entry.

Definition 4.3 (Forward Star Representation)

Definition 4.4 (Backward Star Representation)

5 Hall's theorem and Bipartite Graphs

6 Set coverings and Independent Sets

Definition 6.1 (Independent set)

An independent set of nodes $A \subseteq N$ is a set such that if $i \in A$, $j \in A$, and $i \neq j$, then $ij \notin G$.

Definition 6.2 (Maximal Independent set)

An independent set of nodes A is maximal if it is not a proper subset of any other independent set of nodes.

Lemma 6.1

Consider a network (N,g) and a network (N,g') such that $g \subset g'$. Any independent set A of g' is an independent set of g, but if $g' \neq g$ then there exist (maximal) independent sets of g that are not (maximal) independent sets in g'.

7 Colorings

8 Eulerian Tours and Hamiltonian Cycles

Definition 8.1 (Eulerian Cycles)

х

Theorem 8.1 (Eulerian Cycles theorem)

A graph (N, G) has an Eulerian cycle iff each node must have an even degree.

Proof

Definition 8.2 (Hamiltonian cycle)

Lemma 8.1 (Hamiltonian cycle theorem)

Proof

Bibliography

Kanti, John (Dec. 2018). *Proof That If All Vertices Have Degree at Least Two Then* \$*G*\$ *Contains a Cycle*. Forum Post.